If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14y^2-5y-1=0
a = 14; b = -5; c = -1;
Δ = b2-4ac
Δ = -52-4·14·(-1)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-9}{2*14}=\frac{-4}{28} =-1/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+9}{2*14}=\frac{14}{28} =1/2 $
| (3x-1)=(5x+4) | | 10+0.25x=x | | 10+(0.25x)=x | | x=10+0.25x | | 100+1/4x=x | | x-x/4-1/2=3+x/4 | | 4(p-5)=3 | | 6n=85 | | 4=12/5x+x | | w^3=512 | | y^3-3y^2-14=0 | | 12x+5=60 | | 3(3x-5)=2(x+4) | | 2.8(13.7r-2.8)=73.5 | | 8/40=6/x | | 20+2x=25x | | 3–2x=-4x+6 | | 3x-2/5+3=(4x-1/3) | | (3x-2/5)+3=(4x-1/3) | | (5y-4)*(9+y)^2=y | | 4x^2+3x-49+22=0 | | 5x^2+3x-64+48-20=0 | | 5x-34=66 | | 9x^2-36x-12960=0 | | x^2-4x+1440=0 | | 9x^2-36x+12960=0 | | 2a+5a-a= | | 9x-36+12960/x=0 | | (3x-2/5)+3=4x-1/3 | | x^2+1436=0 | | (4/2x-3)+(5/5x-4)=(3/(x+2)) | | (4/x-2)-(3/x+1)=(8/(x-2)(x+1)) |